y

Cocoa Text

Session 306




s

Cocoa Text

Doug Davidson
Cocoa Frameworks Engineer



Introduction and Concepts

* Text system is at the heart of Cocoa
* Responsible for almost all visible text

* Handles everything from simple string display
to the five-minute text editor, and beyond

* Fully Unicode based
* Highly customizable



Concepts

* Characters + attributes = attributed string
* Attributes include fonts, paragraph attributes
* Glyphs are elements of fonts

* Containers describe geometry



Example:

* Character: Latin small letter a acute (a)/
* Attributes: Helvetica 64, blue

V 4

*Glyphs: @
* Displayed result:

Y 4

d



Processes

* Attribute fixing—make sure attributes are OK
* Glyph generation—from characters to glyphs
* Layout—position glyphs in containers

* Display—send glyphs to Quartz for display

All of these usually done lazily on demand



Text System Classes

Withrone
NSHextView;
all'efithe text
flows within a
single, typically
rectangle, area.

NSLayoutManagerg, NSTextContainer NSilextView




Text System Classes

* Model—View—Controller

* Model classes model characters, attributes,
geometry

* Controller classes control glyph generation
and layout

*View classes handle user input and display



Model Classes

* NSTextStorage is NSMutableAttributedString

* NSFont, NSColor, NSParagraphStyle, NSTextTab
* NSTextAttachment models attached file

* NSTextContainer models geometry of layout



Controller Classes

* NSLayoutManager is the boss

* Workhorse class that manages all the rest

* Controls glyph generation and layout

* Performs actual display of glyphs

* Source for information about glyphs and layout
* Calls on NSTypesetter to perform layout



View Classes

* NSTextView handles display and input
for a single NSTextContainer region

* NSText is vestigial abstract superclass

* Multiple NSTextViews work together

* Ruler classes handle text rulers

* NSTextAttachmentCell draws attachment



Class Relationships

NSLayoutManager

NSTextContainer

NSilextView

Withrone
NSHextView;
all'efithe text
flows within a
single, typically
rectangle, area.



Class Relationships

* One text storage may have multiple layout
managers, corresponding to different layouts

* One layout manager may have a list of text
containers, into which the text flows

® A text container has at most one text view

* Usually storage owns layout owns container
owns view, but there is a simplified option



ass Relationships

ASHEXtiISTaddeds
hliSHhReregion
fJ'—'f]necJ by 'r'n= f]r;'r

NSTextContainer

paired with
NS DAIDJ
When rn—Jr—" no
NSLayoutManager more room, another

NSTextContainer

OWS onto
econd page.




ass Relationships

Multiple:
NSlEayoutiianagers
dliowiyourtornave!
multiple pr;g;nurum
Of the'same text. The
tlext withinreach view:
can have se J).J .J e
layout andi sections.

NSLayoutManager 5 NSTextContainer

Multiple:
NSlEayoutiianagers
dliowiyourtorave!
multiplerpresentations
of the same text: The
text: within eachiview,
can have se JJ.J .J 2!
layout and sections.

NSLayoutManager g NSTextContainer




Simple Text System Usages

* String drawing for string or attributed string
* Cell drawing used by controls

* For editing, control uses a shared layout
manager and text view, the “field editor”

* Can use layout manager without text view
to measure and/or draw text



Simple Text View Usages

* Simplest and most common case is one text
view, one text container, one layout

* Rule of thumb: Use notification/delegation
before subclassing

* Text view’s delegate has extensive control
over handling of user input



s

Demo

Text View Delegate



Beyond the Single Text View

* Multiple text containers: Multiple pages,
multiple columns, arbitrary regions

e Text container subclass can describe more
or less arbitrary geometry

* Layout manager has ordered list of containers
into which it lays text

* One text view per container, with shared state



tiple Text Containers

ASHEXtiISTaddeds
hliSHhReregion
fJ'—'f]necJ by 'r'n= f]r;'r

NSTextContainer

paired with
NS DAIDJ
When rn—Jr—" no
NSLayoutManager more room, another

NSTextContainer

DWS onto)
econd page.




Multiple Layouts

* A single text storage may have multiple layout
managers, for multiple views of the same text

* For example, a slide presentation app might
display text in a single container (outline), and
simultaneously in multiple containers (slides)

* Changes made in one take effect in text storage,
which notifies all layout managers, which
invalidate appropriate ranges



Multiple Layouts (Cont.)

* Layout manager also sets needs display
for appropriate regions of views

* When views are redisplayed, they ask for
glyph information and glyph drawing

* This lazily causes attribute fixing, glyph
generation, and layout as needed



tiple Layouts

Multiple:
NSlEayoutiianagers
dliowiyourtornave!
multiple pr;g;nurum
Of the'same text. The
tlext withinreach view:
can have se J).J .J e
layout andi sections.

NSLayoutManager 5 NSTextContainer

Multiple:
NSlEayoutiianagers
dliowiyourtorave!
multiplerpresentations
of the same text: The
text: within eachiview,
can have se JJ.J .J 2!
layout and sections.

NSLayoutManager g NSTextContainer




Text Options

* Container may resize to match view, or view
to match container, in horizontal or vertical

* Text views often in scroll view, which may
scroll horizontally or vertically

* Container can be inset within text view, and
text can be inset within text container



Text Options (Cont.)

* Text view has options to control selectability,
editability, rich text, attachments, rulers, font
panel, spellchecking, smart cut/paste, selected
attributes, field editor behavior

* Layout manager has options to control
background layout, hyphenation, attachment
scaling, use of screen fonts



Assembling the Pieces

* Create text storage with text
* Create layout manager(s) and add to text storage
* Create text containers and add to layout manager

* Create text views, if desired, and set for text
containers

*Size and pad containers, inset them in views, and
position VIEWS in SUPErview



Demo

Text Optio



Dealing With the Text

* NSTextStorage stores the text, as a mutable
attributed string subclass

* Use mutable attributed string methods to alter it

* Special feature of text storage is that it notifies
layout managers of changes

* For efficiency, wrap sequences of changes in
beginEditing/endEditing to coalesce



Text Attributes

* Recognized attributes are listed in AppKit’s
NSAttributedString.h header

* Font, colors, underlines, sub/superscript,
ligatures, kerning, baseline offset, paragraph style

* Bold, italic, etc. are traits of the font, managed by
NSFontManager

* Margins, tabs, spacing are part of paragraph style
* New: Right, center, decimal tabs



Special Attributes

* Attachments consist of attachment character
with attachment attribute

« Attribute value is NSTextAttachment,
which points to an NSFileWrapper

e Attachment cell will automatically be
created, or you can use your own

* Link attribute can point to URL or other
object of your choice



Attribute Fixing

* Attribute fixing performed lazily on demand
by text storage

» Font fixing substitutes fonts to make
sure characters can be displayed

e Paragraph fixing makes sure whole
paragraph has the same paragraph style

e Attachment fixing makes sure attachment
attributes go with attachment characters



Getting Text In and Out

* Native format is RTF, or RTFD with attachments
* For pasteboard we provide these, plus plain text
* Methods for reading and writing RTF and RTFD

* Methods for reading from a file, which may be
plain text, RTF, RTFD, HTML, SimpleText, etc.

* Filter services allow third-party extensions



Services

* Standard services allow processing of text
* Text provided and returned on pasteboard
* Filter services for images and text

* Spellcheckers are also a form of service
« All-new spellcheckers for Jaguar



Archiving

* New keyed archiving supports archiving of
most classes in the text system

* NSTextView, NSLayoutManager,
NSTextContainer, and NSTextStorage archive

* Archiving preserves all attributes in text storage
» Custom attributes should be archivable



Dealing With Layout

* NSLayoutManager answers your questions
about glyphs and layout

* Glyph generation and layout performed lazily
on demand

* Layout manager observes changes to text
storage and invalidates as necessary

» You can also invalidate manually



Characters and Glyphs

* Layout manager maps glyph ranges to
character ranges

* Layout manager stores sequence of glyphs
» Control glyph used for tabs, line breaks, etc.
« Null glyph sometimes used for padding

* Layout manager stores glyph attributes
e elastic, inscription



Layout Information

* Layout manager contacts typesetter, which
performs layout

* Typesetter may insert or change glyphs, or
make glyphs not shown

* Typesetter contacts text container for geometry

* Typesetter informs layout manager which
container a glyph goes in, which line fragment,
and where in the fragment



Ask the Layout Manager

* Position, size, and glyph range for line fragment
(position in text container coordinates)

* Glyph range for text container

* Text container, line fragment, and position in
fragment for glyph

* Glyph for coordinates, bounding rect for glyph
range, rect array for glyph range



Drawing Glyphs

* Layout manager actually sends the glyphs
to be drawn, and draws backgrounds and
underlines (using Quartz)

*You can request drawing yourself
* Must have locked focus in appropriate view
* Positions are relative to text container



s

Demo

Layout Manager



Subclassing Text Objects

* First, check to see if you can use existing options
» Example: Selected text attributes
« Example: Temporary attributes

* Next, try notification, delegation, categories
» Example: Command by selector

* Override minimal methods to do what you want




Subclassing NSTextStorage

* Subclass to provide your own storage
mechanism

* Subclass to do your own attribute fixing
* Subclass to obtain additional notifications



Subclassing NSTextContainer

* Subclass to provide custom geometry

* Your custom container will be passed in a
proposed line rectangle

* Return an adjusted rectangle, plus an additional

rectangle for possible further fragments within
the same line



Subclassing NSTextView

* Subclass to alter user interaction

* Subclass to alter drawing behavior at the
view level

* Subclass to alter context menus, cut and
paste, drag and drop, etc.



Subclassing NSLayoutManager

* Subclass to provide custom drawing behavior
» Background, glyphs, underlines
* Subclass to store additional glyph attributes

* Subclass to override hit testing, selection
rectangles, etc.




NSTextAttachmentCell

e Standard text attachment models attached file,
with standard cell to provide inline image

* Subclass text attachment cell to do arbitrary
custom drawing

* Subclass to handle mouse clicks within the cell



Subclassing NSTypesetter

* Most difficult class to subclass
* Hooks after layout of glyph, line

* Subclass to alter layout at the level of
individual glyphs in a line fragment



Demo

Subclassing



Where to Go From Here

* /Developer/Examples/AppKit
o TextEdit
e TextSizingExample
o CircleView
® http://developer.apple.com
Documentation> Mac OS X
> Cocoa >Text Handling



Cocoa Documentation

* Object-Oriented Programming and the

Objective-C Language
* Programming Topics
Application Architecture Memory Management
Foundation Framework Multithreading
Loading Resources Notifications

..and many more!

Documentation > Cocoa
developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html



For More Information

* O'Reilly “Learning Cocoa” and “Building Cocoa
Applications: A Step-by-Step Guide”

* Cocoa Developer Documentation

http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

* Apple Customer Training
http://train.apple.com/



Roadmap

300 Introduction to Cocoa:

: Room A1
What’s Cocoa? Mon., 5:00pm
301 Cocoa: What’s New: Civic

New features and API since 10.1

Tues., 9:00am

302 Cocoa API Techniques:
Understanding, leveraging, and extending

Hall 2
Thurs., 9:00am

305 Cocoa Drawing: Hall 2
Drawing using Cocoa APIs Fri., 10:30am
FF016 Cocoa: | Room A1
Comments and suggestions for Cocoa Fri., 5:00pm



Who to Contact

Heather Hickman

Cocoa Technol og}/ Manager
hhickman@ @apple.com

Cocoa Feedback
cocoa-feedback@group.apple.com

Cocoa Development Mailing List

Subscribe at
www.lists.apple.com/mailman/listinfo/cocoa-dev

’

http://developer.apple.com/wwdc2002/urls.html '



Heather Hickman
Cocoa Evangelist
hhickman@apple.com

http://developer.apple.com/wwdc2002/urls.html



& WWDC2002




& WWDC2002




& WWDC2002




